
“Guide” to the CS103 Final
Let’s do this!

benson97, amauro

benson97, amauro “Guide” to the CS103 Final 1 / 65

Table of Contents

Studying for the exam

Examples

Graphs, Functions
Graphs, Pigeonhole Principle
Automata and Regular Expressions
Context-free Grammars
Lava Diagrams

Closing thoughts

benson97, amauro “Guide” to the CS103 Final 2 / 65

Studying for the exam

We can do this!

If you have seen the lectures, you’ll know how to solve the problems

If you know how to do the problem sets, you’ll be prepared

You may wonder... OK, Benson, Annika, that’s nice and all, but

What does “know” even mean?

... Fair question. For the next hour-and-a-half or so, we’ll do our best to
answer.

benson97, amauro “Guide” to the CS103 Final 3 / 65

Studying for the exam

What’s the best way to study? There’s one answer1:

Practice the material you are least comfortable with!

Warning

Don’t read solutions before you write your own answer.

You would be better off re-doing problems we’ve seen before.

Warning

Don’t try to solve dozens of dozens of problems.

It’s not efficient. Theory courses do not award rote memorization.

1More or less.
benson97, amauro “Guide” to the CS103 Final 4 / 65

Studying for the exam

In CS103, there are no tricks. We expect you to be familiar2 with

8 to 10 topics (depends on how you count3)

“Mathematical thinking” fundamentals

Reminder

The best way to prepare is to practice the material you are least
comfortable with!!!

So this is what we’ll be emphasizing today.

2This goes without saying, but also, the practice exams are representative of our expectations
3I would say 5, but I think most people would disagree. — Benson

benson97, amauro “Guide” to the CS103 Final 5 / 65

EXTREMELY IMPORTANT WARNING!

For this review session, we will “work through” problems.

Instead of presenting solutions, we will instead demonstrate our thought
process while working through problems.

EXTREMELY IMPORTANT WARNING!

This means that slides may be incorrect and/or
incomplete!

To our live audience, that means that if you see something that’s incorrect
— please point it out! The earlier we can catch an error, the better!

To students reviewing these slides, this means that the correct solution
may not be presented until the very end of a section.

benson97, amauro “Guide” to the CS103 Final 6 / 65

Graph Homomorphisms

Tag(s): Functions, Graphs, Injections

benson97, amauro “Guide” to the CS103 Final 7 / 65

Graph Homomorphisms

Let’s begin with a new definition. Suppose that G1 = (V1,E1) and
G2 = (V2,E2) are graphs. We’ll say that a homomorphism from G1 to
G2 is a function h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

(i) Below are pictures of two graphs G1 and G2. Find a homomorphism
from G1 to G2 To give your answer, label each node of with the
corresponding node in that the homomorphism maps it to.

benson97, amauro “Guide” to the CS103 Final 8 / 65

Graph Homomorphisms

Let’s begin with a new definition. Suppose that G1 = (V1,E1) and
G2 = (V2,E2) are graphs. We’ll say that a homomorphism from G1 to
G2 is a function h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

(i) Below are pictures of two graphs G1 and G2. Find a homomorphism
from G1 to G2 To give your answer, label each node of with the
corresponding node in that the homomorphism maps it to.

benson97, amauro “Guide” to the CS103 Final 8 / 65

First steps:

1 Try and unpack and intuitively understand this definition

2 Figure out how to check if something satisfies this definition

We’ll say that a homomorphism from G1 to G2 is a function
h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

To do this: walk through the first-order logic carefully with these goals in
mind. It may be less dense than it seems at first!

1 Intuition: Whenever two vertices are neighbors in G1, their images
must still be neighbors in G2

2 How to check: For each edge {u, v}, make sure that h(v) and h(u)
are connected by an edge.

benson97, amauro “Guide” to the CS103 Final 9 / 65

First steps:

1 Try and unpack and intuitively understand this definition

2 Figure out how to check if something satisfies this definition

We’ll say that a homomorphism from G1 to G2 is a function
h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

To do this: walk through the first-order logic carefully with these goals in
mind. It may be less dense than it seems at first!

1 Intuition: Whenever two vertices are neighbors in G1, their images
must still be neighbors in G2

2 How to check: For each edge {u, v}, make sure that h(v) and h(u)
are connected by an edge.

benson97, amauro “Guide” to the CS103 Final 9 / 65

First steps:

1 Try and unpack and intuitively understand this definition

2 Figure out how to check if something satisfies this definition

We’ll say that a homomorphism from G1 to G2 is a function
h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

To do this: walk through the first-order logic carefully with these goals in
mind. It may be less dense than it seems at first!

1 Intuition: Whenever two vertices are neighbors in G1, their images
must still be neighbors in G2

2 How to check: For each edge {u, v}, make sure that h(v) and h(u)
are connected by an edge.

benson97, amauro “Guide” to the CS103 Final 9 / 65

First steps:

1 Try and unpack and intuitively understand this definition

2 Figure out how to check if something satisfies this definition

We’ll say that a homomorphism from G1 to G2 is a function
h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

To do this: walk through the first-order logic carefully with these goals in
mind. It may be less dense than it seems at first!

1 Intuition: Whenever two vertices are neighbors in G1, their images
must still be neighbors in G2

2 How to check: For each edge {u, v}, make sure that h(v) and h(u)
are connected by an edge.

benson97, amauro “Guide” to the CS103 Final 9 / 65

First steps:

1 Try and unpack and intuitively understand this definition

2 Figure out how to check if something satisfies this definition

We’ll say that a homomorphism from G1 to G2 is a function
h : V1 → V2 with the following property:

∀u ∈ V1.∀v ∈ V1.({u, v} ∈ E1 → {h(u), h(v)} ∈ E2).

To do this: walk through the first-order logic carefully with these goals in
mind. It may be less dense than it seems at first!

1 Intuition: Whenever two vertices are neighbors in G1, their images
must still be neighbors in G2

2 How to check: For each edge {u, v}, make sure that h(v) and h(u)
are connected by an edge.

benson97, amauro “Guide” to the CS103 Final 9 / 65

Back to our problem:
(i) Below are pictures of two graphs G1 and G2. Find a homomorphism
from G1 to G2 To give your answer, label each node of with the
corresponding node in that the homomorphism maps it to.

benson97, amauro “Guide” to the CS103 Final 10 / 65

Method 1: start sending adjacent pairs of vertices to adjacent pairs of
vertices and see what happens!

Method 2: Notice that in G2 the only pairs vertices not connected are if
they are identical - all we need is to send adjacent nodes to distinct nodes
(same symbol not adjacent in G1)

Last step: Double-check that our construction works using the ”how to
check” we found earlier
(For each edge {u, v}, make sure that h(v) and h(u) are connected by an
edge.)

benson97, amauro “Guide” to the CS103 Final 11 / 65

Method 1: start sending adjacent pairs of vertices to adjacent pairs of
vertices and see what happens!

Method 2: Notice that in G2 the only pairs vertices not connected are if
they are identical - all we need is to send adjacent nodes to distinct nodes
(same symbol not adjacent in G1)

Last step: Double-check that our construction works using the ”how to
check” we found earlier
(For each edge {u, v}, make sure that h(v) and h(u) are connected by an
edge.)

benson97, amauro “Guide” to the CS103 Final 11 / 65

Method 1: start sending adjacent pairs of vertices to adjacent pairs of
vertices and see what happens!

Method 2: Notice that in G2 the only pairs vertices not connected are if
they are identical - all we need is to send adjacent nodes to distinct nodes
(same symbol not adjacent in G1)

Last step: Double-check that our construction works using the ”how to
check” we found earlier

(For each edge {u, v}, make sure that h(v) and h(u) are connected by an
edge.)

benson97, amauro “Guide” to the CS103 Final 11 / 65

Method 1: start sending adjacent pairs of vertices to adjacent pairs of
vertices and see what happens!

Method 2: Notice that in G2 the only pairs vertices not connected are if
they are identical - all we need is to send adjacent nodes to distinct nodes
(same symbol not adjacent in G1)

Last step: Double-check that our construction works using the ”how to
check” we found earlier
(For each edge {u, v}, make sure that h(v) and h(u) are connected by an
edge.)

benson97, amauro “Guide” to the CS103 Final 11 / 65

A graph is called complete if:

∀u ∈ V .∀v ∈ V .(u ̸= v ↔ {u, v} ∈ E).

(ii) Let G = (V ,E) be a complete graph and let h : V → V be an
arbitrary function. Prove that h is injective if and only if it’s a
homomorphism from to itself.

1 Unpack definition of complete: The graph contains all edges

2 Recall definition of injective: A function is injective if whenever
h(x1) = h(x2) then x1 = x2.

Here, we will just try and prove one direction.

benson97, amauro “Guide” to the CS103 Final 12 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective.

Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Want to show: if h : V → V is a homomorphism and V is complete,
then h is injective. Try and ”follow your nose” by unpacking definitions:

Suppose h(x1) = h(x2)

If x1 = x2 we would be done, so suppose x1 ̸= x2.

What does V being complete imply here?

Then x1 and x2 neighbors

What does h being a homomorphism imply here?

h(x1) and h(x2) must be neighbors as well

Is this possible?

No! h(x1) = h(x2)

Therefore x1 = x2.

Then you would write this down in the form of a proof. This is an example
of a thought process to come up with a solution!

benson97, amauro “Guide” to the CS103 Final 13 / 65

Domatic Partitions

Tag(s): Graphs, Pigeonhole Principle

benson97, amauro “Guide” to the CS103 Final 14 / 65

Domatic Partitions

A domatic partition of the nodes of a graph G (V ,E) is a set

{V1, ...,Vn}

such that each Vi is a dominating set of G , and every node v ∈ V belongs to
exactly one of the Vi ’s. The domatic number of a graph, denoted d(G), is the
maximum number of dominating sets in a domatic partition of V .

(i) The graph shown below has domatic number two. Find two examples of
domatic partitions of that graph into two dominating sets. No justification is
necessary.

benson97, amauro “Guide” to the CS103 Final 15 / 65

Domatic Partitions

Uh oh.

This is a dense definition. We can’t just write a proof.

That’s why examples are important! And part (i) is meant to guide us
through this process. So while we work on (i), let’s process the definition
of domatic partitions.

You may have noticed that, in CS103, this is the first part of many problems. In

future proof-based courses, if you’re ever stuck (we often are), we should start

with examples.

benson97, amauro “Guide” to the CS103 Final 16 / 65

Domatic Partitions

Ummm.. uhhh.. what’s a dominating set?

Definition

A dominating set in G (V ,E) is a set D ⊆ V with with the following
property:

∀v ∈ V . (v ̸∈ D → ∃u ∈ D. {u, v} ∈ E)

OK! Wow! Now we understand dominating sets! Right?

benson97, amauro “Guide” to the CS103 Final 17 / 65

Domatic Partitions

Definition, informal edition

A dominating set is a set of vertices that are connected to every other
vertex.

Much better! (: and (informally, again) domatic partitions are sets of dominating

sets, with some extra stuff.

So... back to our problem I guess...

benson97, amauro “Guide” to the CS103 Final 18 / 65

Domatic Partitions

(i) Find two examples of domatic partitions of that graph into two
dominating sets

Using our intuition

We want vertices that are connected to a lot of other vertices!

Let’s just find those.

benson97, amauro “Guide” to the CS103 Final 19 / 65

Domatic Partitions

That looks pretty good. Let’s quickly look back our problem...

i) Find two examples of domatic partitions of that graph into two
dominating sets

OK! Round 2!

benson97, amauro “Guide” to the CS103 Final 20 / 65

Domatic Partitions

Me: Great, that’s correct, right?

Narrator: This was not correct.

benson97, amauro “Guide” to the CS103 Final 21 / 65

Domatic Partitions

Me: Great, that has to be correct, right?

Narrator: Nope.

Definition

A domatic partition of the nodes of a graph G (V ,E) is a set

{V1, ...,Vn}

such that... every node v ∈ V belongs to exactly one of the Vi ’s.

benson97, amauro “Guide” to the CS103 Final 22 / 65

Domatic Partitions

Me: Surely, this is correct.

Narrator: ...

i) Find two examples of domatic partitions of that graph into two
dominating sets

benson97, amauro “Guide” to the CS103 Final 23 / 65

Domatic Partitions

Me: AsdkjlkqwjLQJOIQjqwegotthisoiwjdlkadwjl!!

OK, round 3, but this time, let’s spice things up.

Note that we explicitly created a different set!

And now it’s your turn (:

benson97, amauro “Guide” to the CS103 Final 24 / 65

Domatic Partitions

(ii) As a refresher, the degree of a node in a graph G , denoted d(G), is the

number of nodes that is adjacent to. Equivalently, it’s the number of edges

touching. Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each

node v ∈ V .

benson97, amauro “Guide” to the CS103 Final 25 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node

v ∈ V .

Note

If you have attended our OH (and thank you for all who did!) you know that we
like to write down whatever information we have, preferably in an easy to
reference place.

This is what we did for this problem! But it’s on some scratch paper, and not on
these slides.

benson97, amauro “Guide” to the CS103 Final 26 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

Thought 1

For each v ∈ V ? Why? Isn’t d(G) constant?

d(G) must be restricted by the “smallest” v . (The v with the smallest degree.)

Let’s look at our graph again.

benson97, amauro “Guide” to the CS103 Final 27 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

Why can’t we have d(G) > 2? What would happen if we tried to create 3
partitions?

benson97, amauro “Guide” to the CS103 Final 28 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

We immediately run into a problem!!

Thought 2

If we have too many V1, ...,Vn, our smallest vertex doesn’t have enough
neighbors!

benson97, amauro “Guide” to the CS103 Final 29 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

Now, let’s try to describe what we just did. We...

Found the smallest node

Added it to V1

Added a neighbor to V2

Then we ran out of space.

Thought 3

Remember when we forgot to add a vertex to a Vi in (i)?

We should try to add a vertex to each Vi , and see if we run into problems.

benson97, amauro “Guide” to the CS103 Final 30 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

For the sake of contradiction, let’s say we have d(G) > deg(v) + 1

Let’s think of v as the node with the fewest edges.

Add a neighbor of v to each Vi in our domatic partition.

... we will run out of neighbors! Some Vi will not have a neighbor.

Thought 4

Me: Does this matter?

Narrator: It does. He won’t find out for another 10 minutes though.

benson97, amauro “Guide” to the CS103 Final 31 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

Uh oh.
We are officially stuck. What should we do?

This is when it’s helpful to look back on our definitions. Which is what we did
here. What definition relates to neighbors?

If we calmly look through our notes...

Definition

A dominating set in G (V ,E) is a set D ⊆ V with with the following property:

∀v ∈ V . (v ̸∈ D → ∃u ∈ D. {u, v} ∈ E)

benson97, amauro “Guide” to the CS103 Final 32 / 65

Domatic Partitions

(ii) Prove that if is a graph G (V ,E), then d(G) ≤ deg(v) + 1 for each node
v ∈ V .

Vi must have a vertex that’s a neighbor to v OR v itself!!

But we’re out of neighbors, so we must have reached some sort of contradiction.

Now it’s your turn!

The logic we have above is OK, but it’s not complete.

As we write our proof, we may notice a few pitfalls. You’ll have to fix them.

If it’s helpful, you may recall that this was filed under “Pigeonhole Principle”. We don’t necessarily have to frame our solution

as such (I did not) but... could be relevant.

benson97, amauro “Guide” to the CS103 Final 33 / 65

Avoid the Triple B

Tag(s): DFAs, Regexes

benson97, amauro “Guide” to the CS103 Final 34 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}

Design a DFA for L

Write a regular expression for L

benson97, amauro “Guide” to the CS103 Final 35 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}

Design a DFA for L

Write a regular expression for L

For the sake of time, we’ll skip the DFA. But it’s not too bad and if you have any
questions, feel free to ask on Ed.

benson97, amauro “Guide” to the CS103 Final 36 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

How should we approach this problem?

Like a DFA or NFA, it is nice to consider cases.

A Promising Start?

Because bbb cannot be in w , {bbbb, bbbbb, ...} can’t be in w either.

Therefore, we can break this into three cases! Each segment of w has 0,
1, or 2 b’s.

This is not too different from a DFA — we create our regex based upon
the number of b’s allowed at any given time.

benson97, amauro “Guide” to the CS103 Final 37 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

How can we implement this? In short, our current plan to union the languages of
3 regexes:

{w has no b’s} ∪ {w has b’s as a substring} ∪ {w has no bb’s as a substring}

benson97, amauro “Guide” to the CS103 Final 38 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Case 1: w has no b. Then there are only a’s. Our regex is then a∗.

benson97, amauro “Guide” to the CS103 Final 39 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Case 2: w has the substring b. What does this look like?

b

ab

ba

Our first attempt: b∗(ab)∗(ba)∗

When does this work?

Works! b, abab, babab, ba

Does not work! bbb, aab, abba

benson97, amauro “Guide” to the CS103 Final 40 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Case 2: w has the substring b. What does this look like?

b

abab

aaaaa

Our first attempt: b∗(ab)∗(ba)∗

When does this work?

Works! b, abab, babab, ba

Does not work! bbb, aab, abba

Let’s take a step back...

Based upon our examples, what problems do you spot?

benson97, amauro “Guide” to the CS103 Final 41 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Case 2: w has the substring b. What does this look like?

Our first attempt: b∗(ab)∗(ba)∗

Cannot handle multiple a’s

Can use b∗ to generate bbb

abba is valid, but not what we intended

Idea: Prevent b’s from being next to each other!

Our second attempt: b(aba)∗

benson97, amauro “Guide” to the CS103 Final 42 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Case 2: w has the substring b. What does this look like?

Our second attempt: b(aba)∗

baaa is still a problem

Cannot end with b e.g. babab

Let’s just add them.

Our third attempt: b(aba ∪ a ∪ ab)∗

Looks good... except we don’t need to start with a b!

Our fourth attempt: (b ∪ a)(aba ∪ a ∪ ab)∗

benson97, amauro “Guide” to the CS103 Final 43 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Case 1: a∗

Case 2: (b ∪ a)(aba ∪ a ∪ ab)∗

Now we need to handle Case 3.

... Well, we’ll let you do that. We can proceed in a similar fashion. But there is a
problem.

Uh oh.
What if w has b and bb as substrings?

We didn’t cover this case!!

benson97, amauro “Guide” to the CS103 Final 44 / 65

Avoid the Triple B

Let Σ = {a, b} and L = {w ∈ Σ∗ |w does not contain www as a substring}.
Write a regular expression for L.

Don’t panic! We’re not in trouble.

An Alternate Perspective

We can actually divide our string (Case 2) into three parts.

b ∪ a (start)

aba ∪ a ∪ ab (middle)

ab (end)

Note: Case 2 did not explicitly handle ab (end), because it was already in
aba ∪ a ∪ ab.

We’re actually really close! With a few adjustments to Case 2, we (i.e. you, at
home, as practice) can obtain the correct answer.

benson97, amauro “Guide” to the CS103 Final 45 / 65

Avoid the Triple B

From the get-go, we could have started from “An Alternative Perspective” i.e.
dividing our string into 3 parts.

Many of you may have jumped to that intuition! And that is a perfectly
acceptable approach. In fact, on an exam, wouldn’t that be ideal?

Unfortunately, in our experience, the correct intuition for a regex, DFA, or NFA
does not always immediately occur to us.

If this is the case, then is beneficial to break down the problem in any way you
can, create examples, and iteratively build your regex/DFA/NFA
(“guess-and-check”).

Remark
What we just saw is actually how we (your CAs) solved this problem. Notice that
mistakes were made! Generally, when we do math, the solution often comes to us in bits
and pieces.

benson97, amauro “Guide” to the CS103 Final 46 / 65

Even Sums

Tag(s): CFGs

benson97, amauro “Guide” to the CS103 Final 47 / 65

Even Sums

Our problem:

Σ = {3, 8,+, (,) }
L = {w ∈ Σ∗ |w is a syntactically correct

mathematical expression for an even number}

Examples Not Examples

8 ε

38 3

8 + 8 8 + 8 + 3

33 + 38 + 83 + 88 33388833

(8) (((8 + 3

(8 + 3 + 3 + (3 + 3)) ++3

((((88333388)))) 8(3)

benson97, amauro “Guide” to the CS103 Final 48 / 65

Even Sums

Our problem:

Σ = {3, 8,+, (,) }
L = {w ∈ Σ∗ |w is a syntactically correct

mathematical expression for an even number}

Examples Not Examples

8 ε

38 3

8 + 8 8 + 8 + 3

33 + 38 + 83 + 88 33388833

(8) (((8 + 3

(8 + 3 + 3 + (3 + 3)) ++3

((((88333388)))) 8(3)

Hmmm..

This problem is complicated. How can we make it easier for ourselves?
What sticks out to you?

This is not a rhetorical question. If you’re watching a recording, pause
the video. If you’re with us, live, say anything that comes to mind!

benson97, amauro “Guide” to the CS103 Final 49 / 65

Even Sums

Examples Not Examples

8 ε

38 3

8 + 8 8 + 8 + 3

33 + 38 + 83 + 88 33388833

(8) (((8 + 3

(8 + 3 + 3 + (3 + 3)) ++3

((((88333388)))) 8(3)

You may have noticed:

Odd numbers can be split

A 3 does not mean a number is odd!

Parentheses are recursive

Also, addition is the only valid operation. The problem specifically states this.

benson97, amauro “Guide” to the CS103 Final 50 / 65

Even Sums

Examples Not Examples

8 ε

38 3

8 + 8 8 + 8 + 3

33 + 38 + 83 + 88 33388833

(8) (((8 + 3

(8 + 3 + 3 + (3 + 3)) ++3

((((88333388)))) 8(3)

Let’s think about a) base cases and b) even/odd numbers
We would say that this is the essential “insight” to solve this problem.

benson97, amauro “Guide” to the CS103 Final 51 / 65

Even Sums

Rule Why?

A → ... Our “base case”

B → ... Even numbers

C → ... Odd numbers

We love base cases! So let’s handle those first.

benson97, amauro “Guide” to the CS103 Final 52 / 65

Even Sums

Rule Why?

A → ... Our “base case”

B → ... Even numbers

C → ... Odd numbers

We love base cases! So let’s handle those first.

Practice, practice, practice

If you’re watching a recording, really, pause this video and try to fill
out A on your own. This is one of the few times where we’re rewarded
for not watching live.

As an example, here’s how we could handle odd numbers: A → B + B

Can you think of more rules?

benson97, amauro “Guide” to the CS103 Final 53 / 65

Even Sums

Rule Why?

A → ... Our “base case”

B → ... Even numbers

C → ... Odd numbers

We love base cases! So let’s handle those first.

We need parentheses! A → (A)

We need to add even numbers! A → B+ A

We need to add odd numbers! A → C+ C+ A

Why did we end each with rule with A?

benson97, amauro “Guide” to the CS103 Final 54 / 65

Even Sums

Rule Why?

A → (A) | A → B + A | A → C + C + A Our “base case”

B → ... Even numbers

C → ... Odd numbers

How can we create even numbers?

B ends in 8 (but can have other stuff, too)

That’s pretty much it, actually. Let’s create a rule.

We need to end in 8! B → 8

We need other stuff! B → D8
Let D be other stuff.

After 8, the number doesn’t matter. D → ε | 3D | 8D

benson97, amauro “Guide” to the CS103 Final 55 / 65

Even Sums

Rule Why?

A → (A) | A → B + A | A → C + C + A Our “base case”

B → D8 Even numbers

D → ε | 3D | 8D Terminal for evens

C → ... Odd numbers

How can we create odd numbers?

C ends in 3! C → E3
We’ll need to do something similar to D with E

An odd number and an even number! C → C+ B

benson97, amauro “Guide” to the CS103 Final 56 / 65

Even Sums

Rule Why?

A → (A) | A → B + A | A → C + C + A Our “base case”

B → D8 Even numbers

D → ε | 3D | 8D Terminal for evens

C → E3 | C + B Odd numbers

E → ε | 3E | 8E Terminal for odds

Me: This has to be correct! I totally do not need to check my work, even if I’ll have

accidentally misled dozens of people on record!

Narrator: This was not correct.

benson97, amauro “Guide” to the CS103 Final 57 / 65

Even Sums

Rule Why?

A → (A) | A → B + A | A → C + C + A Our “base case”

B → D8 Even numbers

D → ε | 3D | 8D Terminal for evens

C → E3 | C + B Odd numbers

E → ε | 3E | 8E Terminal for odds

Me: This has to be correct! I totally do not need to check my work, even if I’ll have

accidentally misled dozens of people on record!

Narrator: This was not correct.

Remark

It’s your turn again!

To check our work efficiently, it’s easiest to return to examples.
Fortunately, the problem gave us plenty earlier.

benson97, amauro “Guide” to the CS103 Final 58 / 65

Lava Diagrams

Tag(s): Lava Diagram

benson97, amauro “Guide” to the CS103 Final 59 / 65

Lava Diagrams

Let’s do a lava diagram question! First, let’s recall the lava diagram guide.

benson97, amauro “Guide” to the CS103 Final 60 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)
A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?
A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)

A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)
A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?
A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)
A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?
A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)

A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?
A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)
A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?
A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)
A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?

A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s first look at an example where our language is comprised of
encodings of Turing machines. Lava diagram 6 part 6:

{⟨M,w⟩ |M is a TM, w is a string, M halts on w in at most |w |137 steps}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: Yes, we can run the Turing machine M for |w |137 steps on w to
confirm it halts.

2 Q: Is it decidable? (Given ⟨M,w⟩ ̸∈ L, can we prove that ⟨M,w⟩ ̸∈ L)
A: Yes, we can run M on w for |w |137 steps and if it does not halt, it
is not in L.

3 Q: Is it regular? Are there finitely many cases to check?
A: No, since Turing machines are not limited to finite memory.

benson97, amauro “Guide” to the CS103 Final 61 / 65

Let’s do one more example with a language of Turing machine encodings!
Lava diagram 2, part 5:

L = {⟨M,w⟩ | M is a TM and M does not accept w}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: No, if we run M on w , it may loop on w . There is no way to rule
out the chance that M may accept w eventually.

benson97, amauro “Guide” to the CS103 Final 62 / 65

Let’s do one more example with a language of Turing machine encodings!
Lava diagram 2, part 5:

L = {⟨M,w⟩ | M is a TM and M does not accept w}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)

A: No, if we run M on w , it may loop on w . There is no way to rule
out the chance that M may accept w eventually.

benson97, amauro “Guide” to the CS103 Final 62 / 65

Let’s do one more example with a language of Turing machine encodings!
Lava diagram 2, part 5:

L = {⟨M,w⟩ | M is a TM and M does not accept w}

1 Q: Is it recognizable? (Given ⟨M,w⟩ ∈ L, can we prove that
⟨M,w⟩ ∈ L)
A: No, if we run M on w , it may loop on w . There is no way to rule
out the chance that M may accept w eventually.

benson97, amauro “Guide” to the CS103 Final 62 / 65

Takeaways:

The only way to learn information about what a Turing machine will
do on a certain input is to run it on that input!

You cannot check infinitely many strings to prove something

If there is a chance a Turing machine could loop on a certain input,
there is no way to prove it does (it might halt at some far later time,
and no matter how long you wait you can’t rule this out).

benson97, amauro “Guide” to the CS103 Final 63 / 65

Takeaways:

The only way to learn information about what a Turing machine will
do on a certain input is to run it on that input!

You cannot check infinitely many strings to prove something

If there is a chance a Turing machine could loop on a certain input,
there is no way to prove it does (it might halt at some far later time,
and no matter how long you wait you can’t rule this out).

benson97, amauro “Guide” to the CS103 Final 63 / 65

Takeaways:

The only way to learn information about what a Turing machine will
do on a certain input is to run it on that input!

You cannot check infinitely many strings to prove something

If there is a chance a Turing machine could loop on a certain input,
there is no way to prove it does (it might halt at some far later time,
and no matter how long you wait you can’t rule this out).

benson97, amauro “Guide” to the CS103 Final 63 / 65

Now let’s do an example that does not involve Turing machines. Lava
diagram 6 part 4:

L = {1m+1n= 1m+n|m, n ∈ N and m ≤ 10137}

1 Q: Is it recognizable? (Given w ∈ L, can we prove that w ∈ L?)

A: Yes, we can count the number of 1s appearing on the left-hand
side and check if it is the same number on the right-hand side. We
can also count and confirm that m ≤ 10137

2 Q: Is it decidable? (Given w ̸∈ L, can we prove that w ̸∈ L?)
A: Yes, we can count and see that either m > 10137 or that the
number of 1s on the left hand side is different than the number on
the right.

3 Q: Is it regular?
A: No, for example S = {1 + 1n|n ∈ N} is an infinite distinguishing
set. Choosing 1 + 1n and 1 + 1m from S, with w == 1n+1 we see
that 1 + 1m = 1n+1 is not in L while 1 + 1n = 1n+1 is in L.

benson97, amauro “Guide” to the CS103 Final 64 / 65

Now let’s do an example that does not involve Turing machines. Lava
diagram 6 part 4:

L = {1m+1n= 1m+n|m, n ∈ N and m ≤ 10137}

1 Q: Is it recognizable? (Given w ∈ L, can we prove that w ∈ L?)
A: Yes, we can count the number of 1s appearing on the left-hand
side and check if it is the same number on the right-hand side. We
can also count and confirm that m ≤ 10137

2 Q: Is it decidable? (Given w ̸∈ L, can we prove that w ̸∈ L?)
A: Yes, we can count and see that either m > 10137 or that the
number of 1s on the left hand side is different than the number on
the right.

3 Q: Is it regular?
A: No, for example S = {1 + 1n|n ∈ N} is an infinite distinguishing
set. Choosing 1 + 1n and 1 + 1m from S, with w == 1n+1 we see
that 1 + 1m = 1n+1 is not in L while 1 + 1n = 1n+1 is in L.

benson97, amauro “Guide” to the CS103 Final 64 / 65

Now let’s do an example that does not involve Turing machines. Lava
diagram 6 part 4:

L = {1m+1n= 1m+n|m, n ∈ N and m ≤ 10137}

1 Q: Is it recognizable? (Given w ∈ L, can we prove that w ∈ L?)
A: Yes, we can count the number of 1s appearing on the left-hand
side and check if it is the same number on the right-hand side. We
can also count and confirm that m ≤ 10137

2 Q: Is it decidable? (Given w ̸∈ L, can we prove that w ̸∈ L?)

A: Yes, we can count and see that either m > 10137 or that the
number of 1s on the left hand side is different than the number on
the right.

3 Q: Is it regular?
A: No, for example S = {1 + 1n|n ∈ N} is an infinite distinguishing
set. Choosing 1 + 1n and 1 + 1m from S, with w == 1n+1 we see
that 1 + 1m = 1n+1 is not in L while 1 + 1n = 1n+1 is in L.

benson97, amauro “Guide” to the CS103 Final 64 / 65

Now let’s do an example that does not involve Turing machines. Lava
diagram 6 part 4:

L = {1m+1n= 1m+n|m, n ∈ N and m ≤ 10137}

1 Q: Is it recognizable? (Given w ∈ L, can we prove that w ∈ L?)
A: Yes, we can count the number of 1s appearing on the left-hand
side and check if it is the same number on the right-hand side. We
can also count and confirm that m ≤ 10137

2 Q: Is it decidable? (Given w ̸∈ L, can we prove that w ̸∈ L?)
A: Yes, we can count and see that either m > 10137 or that the
number of 1s on the left hand side is different than the number on
the right.

3 Q: Is it regular?
A: No, for example S = {1 + 1n|n ∈ N} is an infinite distinguishing
set. Choosing 1 + 1n and 1 + 1m from S, with w == 1n+1 we see
that 1 + 1m = 1n+1 is not in L while 1 + 1n = 1n+1 is in L.

benson97, amauro “Guide” to the CS103 Final 64 / 65

Now let’s do an example that does not involve Turing machines. Lava
diagram 6 part 4:

L = {1m+1n= 1m+n|m, n ∈ N and m ≤ 10137}

1 Q: Is it recognizable? (Given w ∈ L, can we prove that w ∈ L?)
A: Yes, we can count the number of 1s appearing on the left-hand
side and check if it is the same number on the right-hand side. We
can also count and confirm that m ≤ 10137

2 Q: Is it decidable? (Given w ̸∈ L, can we prove that w ̸∈ L?)
A: Yes, we can count and see that either m > 10137 or that the
number of 1s on the left hand side is different than the number on
the right.

3 Q: Is it regular?

A: No, for example S = {1 + 1n|n ∈ N} is an infinite distinguishing
set. Choosing 1 + 1n and 1 + 1m from S, with w == 1n+1 we see
that 1 + 1m = 1n+1 is not in L while 1 + 1n = 1n+1 is in L.

benson97, amauro “Guide” to the CS103 Final 64 / 65

Now let’s do an example that does not involve Turing machines. Lava
diagram 6 part 4:

L = {1m+1n= 1m+n|m, n ∈ N and m ≤ 10137}

1 Q: Is it recognizable? (Given w ∈ L, can we prove that w ∈ L?)
A: Yes, we can count the number of 1s appearing on the left-hand
side and check if it is the same number on the right-hand side. We
can also count and confirm that m ≤ 10137

2 Q: Is it decidable? (Given w ̸∈ L, can we prove that w ̸∈ L?)
A: Yes, we can count and see that either m > 10137 or that the
number of 1s on the left hand side is different than the number on
the right.

3 Q: Is it regular?
A: No, for example S = {1 + 1n|n ∈ N} is an infinite distinguishing
set. Choosing 1 + 1n and 1 + 1m from S, with w == 1n+1 we see
that 1 + 1m = 1n+1 is not in L while 1 + 1n = 1n+1 is in L.

benson97, amauro “Guide” to the CS103 Final 64 / 65

Closing thoughts

benson97, amauro “Guide” to the CS103 Final 65 / 65

